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Abstract 

In order to model flood losses it is necessary to calculate the frequency of large storms and their 

duration and intensity. Coherent weather measurement is a recent phenomenon and even so 

measurement has its flaws. For this reason advanced statistical tools are required to evaluate what 

the extreme values are of these three variables. Catalytics’ methodology is laid out in this paper. 
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Introduction 

 

This paper will assume that the probabilistic flood hazard analysis (PFHA) for a specified site can be 

characterized by: (1) the mean flood activity rate �, (2) the distribution of flood level ����� and (3) the 

site, or gauging station-characteristic, maximum possible flood level ��	
.  
 

According to above parameterization, the flood activity rate �	 describes the mean number of floods 

expected to occur within the vicinity of the specified site with water level equal or larger than ���
, 

within specified a time interval, usually 1 year. While this paper acknowledges that are no constrains 

regarding the distribution of the flood level �����, for purposes of illustration it will assume that the 

functional form of �����is known and has form of negative exponential distribution with an unknown 

parameter ��. From the physical point of view, the parameter �� describes the ratio between low and 

high level flood occurrences. The physical mining of the maximum possible flood water level ��	
 is 

the same as for example, meaning of the regional characteristic, maximum possible seismic event 

magnitude ��	
.  

 

It must be clearly stated, that the proposed procedure of flood hazard assessment is generic and can 

be applied virtually to any temporal and flood size distributions.  

 

Nature of Input Data 

 
The lack or incompleteness of data in flood records is a frequent issue in a statistical analysis of flood 

hazard. Contributing factors include the historical and socio–economic context and demographic 

variations. In general and in most cases, the degree of completeness is a monotonically increasing 

function of time, i.e. the more recent portion of the catalogue is more complete and includes smaller 

floods. Our approach and its associated mathematical formalism makes provision for the floods 

record to contain three types of data: (1) very large prehistoric floods (paleo-floods), dated over the 

last thousands of years; (2) the deepest historic floods which occurred in the course of the last few 

hundred years; and (3) complete recent data for a relatively short period of time.  Often, the complete 

part of the record can itself be divided into several sub-records, each of which contains complete flood 

data above a given flood level ���
���
, and occurring in a certain period of time �� where j	= 1,… , � 

and � is the number of complete flood sub-records. Uncertainty in knowledge of flood water level m 

can also be taken into account by assuming that the observed flood level is also an unknown and that 

the ‘true’ level is subjected to a random error that follows a mathematical distribution having zero 

mean and a known standard deviation such as the Gaussian distribution (Eadie et al., 1971; Tinti and 

Mulargia, 1985). The schematic illustration of such a flood database is illustrated in Figure 1. 

 

 



 

 

 

Figure 1. Illustration of data which can be used to obtain reccurence parameters of the proposed flood 
model. The applied approach permits the combination of the largest  (prehistoric/paleo- and historic 
floods) and complete flood records having variable level of completeness.  It accepts ‘gaps’ (��) when 

records were missing. The procedure is capable of accounting for uncertainties of occurrence time of 
paleo-floods. Uncertainty in flood records is also taken into account. In that an assumption is made 
that the observed flood water level is unknown, the “true” water level is  subjected to a random error 
that follows a Gaussian distribution having zero mean and a known standard deviation. (Modified after 
Kijko and Sellevoll, 1992) 
 

 

In addition to account of incompleteness and uncertainties of the flood data, the ideal methodology for 

flood hazard assessment takes into account the inevitable discrepancy between the data and the 

model describing the flood occurrence. The basic statistical tools applied in the development of such 

a methodology are briefly described in the following section. 

 

Temporal distribution of floods 

 
It is reasonable to assume that the temporal distribution of the floods level observed in close vicinity of 

a selected site can be modeled by a Poisson process (Cramér, 1961). Following the above 

assumption, the probability that at specified site, within specified time interval �, � floods will be 

observed is  

 

���|�, �� = ��� = �|�, �� = ����
�! e� !� = 0,1,2… (1) 

 



 

 

where � ≡ 	�����
� denotes the mean occurrence rate of floods with an water level greater than or 

equal to���
. 

 

Distribution of flood level records 

 

Assuming that flood levels recorded within close vicinity of the selected site or gauging station, are 

independent, random values distributed according to the cumulative distribution function (CDF) 

�%��� and only for purposes of illustration, assuming that distribution �%��� is a shifted negative 

exponential distribution which is truncated at its top end by the physical characteristics of the site at 

the level of the maximum possible flood level ��	
. Acceptance of this assumption is equivalent to 

the statement that the probability distribution function (PDF) and the cumulative distribution function of 

flood level m are equal to 

 

&���|���
� =
'(
)0																																																							for���
 < �																��exp0−���� −	���
�21 − exp0−�����	
 −���
�2 for	� ≤ � ≤ ��	


0																																																							for� > ��	

 (2) 

and  

�%��|���
� =
'(
) 0																																																							for� < ���
1 − exp0−���� −���
�21 − exp0−�����	
 −���
�2 	for���
 ≤ � ≤ ��	

1																																																							for� > ��	
,																

 (3) 

 

where �� is the parameter. In (2) and (3) the flood level m is considered a continuous variable that 

may assume any value between ���
 and the maximum possible flood water level ��	
 dictated by 

the site’s characteristics.  

 

The functional form of distributions (2)-(3) is well known. This is special case of the gamma 

distribution and since it describes events recurring ‘at random in time’ (Johnson and Kotz, 1970). It is 

widely applied in reliability theory (Barlow and Proschan, 1975; Kalbfleisch and Prentice, 2002), in 

description of frequency and size of natural catastrophes and in quantification of hazard, risks and 

losses (Klugman et al., 2008).  Aki (1965) provides a simple derivation of the special case of the 

above distributions when the flood level m is not truncated from the top. Page (1968) and Cosentino 

et al. (1977) provide distributions equivalent to (2) and (3), when the random variable m denotes 

earthquake magnitude. Also, similar functional forms of these distributions are common in the context 

of frequency e.g. by Geist and Parsons (2006) tsunami size distributions quantification.  

 

Account of discrepancy between the data and the flood occurrence model 

 



 

 

An explicit assumption underpinning most probabilistic flood models is that parameters - the mean 

flood activity rate � as well as parameters of frequency-size flood distribution �%���, remain constant 

in time. However, examination of most of natural disasters records indicates that the sequence of 

natural catastrophes is composed of temporal trends, cycles, oscillations and pure random 

fluctuations (Pisarenko and Rodkin, 2010).  

 

One of the most efficient ways to account for temporal and special fluctuation of parameters � and �� 

(or in general, parameters of flood distribution �%���), can be done by the introduction of so called 

compound distributions. Compound distributions are often called Bayesian distributions because they 

strongly resemble the Bayesian formalism and have many of the same benefits of the original 

formalism, which naturally governs the whole of this paper. These distributions are obtained by 

compounding one distribution with another and they offer a powerful tool to account for cases in which 

a parameter of the distribution is itself a random variable (DeGroot 1970). Treating both parameters �  

and �� as random variables distributed according to respective gamma distributions appropriately 

accounts for their uncertainty. The choice of the gamma distribution does not introduce much 

limitation, since the gamma distribution can fit an extremely large variety of shapes (Johnson and 

Kotz, 1970).  

 

The gamma distribution, given its flexibility, is used to model the distribution of various natures of 

random variables and is given by: 

 

&5�6� = �6�7�8 �7Γ�:� e�;< ,										6 > 0 (4) 

 

whereΓ�:� is the gamma function defined as: 

 

Γ�:� = = >7�8e�?d>.										: > 0B

C
 (5) 

 

The distribution parameters � and : are related to the mean D, and variance EF, of the distribution 

according to: 

D
 = :� (6) 

and 

σ
F = :�F	. (7) 

 

The coefficient of variation expresses the uncertainty related to a random variable x, and is given by: 

 



 

 

HIJ< = E<D< 	. (8) 

 

 

Thus equation (8) describes the variation of a random variable x relative to its mean value, with a 

higher value indicating greater dispersion of the parameter. 

 

After combining the Poisson distribution (1) together with the gamma distribution (4) with parameters 

�  and : , the probability of observing n floods within specified time interval �, for temporary, 

randomly varying flood frequency takes the form: 

 

���|�� = = ���|�, ��&K���d
B

C
� 

= L�� + : ��! L�: � N � � + � O
PQ N �� + � O

R
 

(9) 

 

where � = �̅ E F⁄ ,: = �̅F E F⁄ and L�∙� is the Gamma function (7). Parameter �̅ denotes the mean 

value of the distribution parameter	�.  

 

Similarly, combining the flood level distribution (2) with the gamma distribution for �� with parameters 

�V and :V, the CDF of flood level m takes the form: 

 

����|���
� = HV W1 − X �V�V +�−���
Y
PZ[	, (10) 

 

where �V = �̅\ EVF]  and :V = �̅\F EVF] . The symbol �̅� denotes the mean value of parameter ��,  σ^ 

denotes the standard deviation of �̅� and the normalizing coefficient H^ is given by: 

 

HV = W1 − X �V�V +��	
 −���
Y
PZ[�8. (11) 

 

Noting that : = �̅ ∙ �  and :V = �̅\ 	 ∙ �V, equations (9) and (10) may alternatively be written 

respectively as: 

 

���|�� = L�� + : ��! L�: � X : �̅� + : Y
PQ X �̅��̅� + : Y

R
 (12) 

and 



 

 

����|���
� = HV W1 − X :V:V + �̅\ 	�� −���
Y
PZ[ (13) 

 

with 

 

HV = W1 − X :V:V + �̅\ 	���	
 −���
Y
PZ[�8 (14) 

 

Note that :V = _HIJV�8`F and : = _HIJ �8`F. Upon specification of the HIJ the parameters �̅ and 

�̅�, referred to as hyper-parameters of the respective distributions, are estimated on the basis of 

observed data by applying the maximum likelihood procedure.  

 

One has to be aware that disregarding the temporal and spatial variations of the parameters � and �� 

leads to biased estimates of the flood hazard. The compound distributions arise from many 

probabilistic models applied in the engineering (Hamada et al., 2008), insurance and risk industries 

(Klugman et al., 2008). In the related field of seismic hazard assessment the first application of the 

compound distributions was done by Benjamin (1968).  

 

Extreme flood level distribution as applied to paleo- and historic records 

 
This we will present a construction of the likelihood function of desired flood hazard parameters 

a = _�̅, �̅\` and ��	
, when prehistoric (i.e. paleo-) and historic floods records are available (Cox et 

al., 2002). It is assumed that prehistoric and historic flood records contain only the strongest events. 

The mathematical formalism will be restricted only to the construction of the likelihood function based 

on historic flood occurrences, since with the exception of a few details, the likelihood function based 

on prehistoric floods record is built in a similar manner.  

 

By the Theorem of the Total Probability (e.g. Mood et. al., 1974), the probability that in time interval t 
either no flood occurring, or all occurring floods have flood levels not exceeding m, can be expressed 

as (Epstein and Lomnitz, 1966; Gan and Tung, 1983; Gibowicz and Kijko, 1994)  

 

��cd<��|�C, �� =e��f|��B
ghC

0����|�C�2g (15) 

 

Relation (15) can be expressed in a much simpler form (e.g. Campbell, 1982;1983), which may be 

written as  

��cd<��|�C, �� = W : : + �̅C�01 − ����|�C�2[
PQ

 (16) 



 

 

 

In relations (15) and (16), �C is the flood threshold level for the prehistoric or historic part of the flood 

records (�C ≥ ���
). Flood level ���
 denotes the ‘total’ threshold flood level and has a rather 

formal character. The only restriction on the choice of its value is that ���
 may not exceed the level 

of completeness of any part, prehistoric, historic or complete floods records.  

 

It follows from relation (16) that the PDF of the largest flood level � within a period t is: 

 

&��	
��|�C, �� = �̅C�: &���|�C����	
��|�C, ��: + �̅C�01 − ����|�C�2 	, (17) 

 

where �̅C represents the mean of the distribution of the mean activity rate for floods with flood level not 

less than  �C, and is given by: 

 

�̅C = �̅01 − ����|�C�2, (18) 

 

�̅ denotes the mean activity rate corresponding to flood level�cgR, i.e. �̅ ≡ �̅��cgR�.  
 

The function ����|�C�is the CDF of flood level as defined by (13) and &���|�C� is the PDF of the 

flood level equal to: 

 

&���|�C� = HV�̅\ , X :V:V + �̅\�� −�C�Y
PZj8. (19) 

 

After introducing the PDF (17) of the largest flood level � within a time period �, the likelihood function 

of unknown parameters a = _�̅, �̅\` becomes: 

 

kC�a|lm, nm, opq� =r&��	
��Cg|�C, �g�
Rs
gh8

. (20) 

 

In order to build the likelihood function (20), three kinds of input data are required: lm, nm, and opq, 

where lm is vector of the largest flood levels records, nm denotes vector of the time intervals within 

which the largest floods occurred, and vector opq = _tuv , tuvV`, consists of the coefficients of 

variation (uncertainty relative to the mean) of the parameters a.  

 



 

 

Combination of flood records with different levels of completeness 

 
If it is assumed that the third, complete part of the flood record can be divided into � sub-records, each 

of them has a span �� and is complete starting from the known flood level ���
���
. For each sub-record 

f, lw is used to denote �� flood levels ���, where ��� ≥ ���
���
, f = 1,2,… , �, and x = 1,2, … , �g. Let 

kg�a|lg� denote the likelihood function of the unknown a = _�̅, �̅�`, based on the f-th complete flood 

sub-record. If the flood levels are independent of their number, the likelihood function kg�a|lg�  is the 

product of two functions, kg_�̅y�g` and kg��̅\|�g�.  
 

The assumption that the number of flood events per unit of time is distributed according to the 

compound Poisson distribution (12) which implies that kg��̅|�g� has the following form: 

 

kg_�̅|lg` = _�̅�g�� + : `�PQ X �̅�g���̅�g�� + : Y
Rz , (21) 

 

where �̅��� is the mean activity rate of flood occurrence corresponding to the level of completeness 

���
���
 and is given by: 

�̅g = �̅ {1 − �� |���
�g� |���
}~. (22) 

 

Following the definition of the likelihood function based on a set of independent observations and PDF 

of flood levels (19), the likelihood function kg_β�\|�g` takes the form: 

 

kg_�̅�|lg` = �HV�̅��RzrW1+ �̅\:V |�g� −�cgR�g� }[��PZj8� .Rz
�h8

 (23) 

 

Relations (21) and (23) define the likelihood function of the unknown parameters a = _�̅, �̅�` for each 

complete flood’s record.  

 

Finally, k�a�, the joint likelihood function based on all data, is calculated as the product of the 

likelihood functions based on prehistoric, historic and complete flood records.  

 

The maximum likelihood estimates of the required flood hazard parameters a = _�̅, �̅�` are given by 

the value of a, which for a given maximum, site characteristic, maximum flood level ��	
, maximizes 

the likelihood functionk�a�.  The maximum of the likelihood function is obtained by solving the system 

of two equations  
�ℓ��� = 0 and  

�ℓ��̂� = 0, where ℓ = ln0k�a�2.  
 



 

 

A variance-covariance matrix �0a2 of the estimated flood hazard parameters, �̅� and �̅�����, can be 

calculated according to the formula (Edwards, 1972): 

 

�0a2 = −
��
��
� ∂Fℓ∂λ�F ∂Fℓ∂λ� ∂β��∂Fℓ∂β�� ∂λ�

∂Fℓ
∂β��F ��

��
��8

 (24) 

 

where derivatives are calculated at the point �̅ = �̅� and �̅\ = �̅\�. 

 

 

Estimation of the Maximum, Site Characteristic Flood Level l��� 
 
From a formal point of view, the maximum likelihood estimate of ��	
 is simply the largest observed 

flood level ��	
���  within the span of the entire flood record T. This follows from the fact that the 

likelihood function k�a� decreases monotonically for ��	
 → +∞.	 Therefore, a more realistic 

estimation of ��	
 can be provided only by introduction of some additional information. It can be 

done e.g. by introducing the condition that the largest observed flood ��	
���  within the span of the 

entire flood record is equal to the largest expected flood level �0��	
��� ; �2. One can show, (Kijko, 

2004; Kijko and Singh, 2011) that introduction of such a condition leads to the equation: 

 

��	
 	= 	�cd<��� + = 0��� |�cgR)]R¡ 
c¢£¤

c¢z¥
. (25) 

 

where��( |���
) denotes the compound CDF of flood level (13). Unfortunately, the integral 

¦ [��( |�cgR)]R¡ c¢£¤c¢z¥  does not have a simple solution. A more accessible assessment can be 

obtained through the application of Cramér’s approximation. According to Cramér (1961), for large �, 

the value of  [��( |�cgR)]R is approximately equal to exp§−�[1 − [��( |�cgR)]¨. After 

replacement of  [��( |�cgR)]
 by its Cramér approximation, equation (25) takes the form (Kijko and 

Graham, 1998; Kijko, 2004, Kijko and Singh, 2011) 

 

��	
 	= 	�cd<©ª« + ¬­/¯	°<;[R±¯/(8�±¯)]V�² {L |− 8P , ³´P} − L |− 8P , ³}~,   (26) 

 

where ´ = ;Z;Zjc¢£¤�c¢z¥, t8 = µ6��−�_1 − HV`�,³ = �HV, 	�V = �̅\ EVF] , and L(∙,∙) is the 

complementary Incomplete Gamma Function (Abramowitz & Stegun, 1970).  



 

 

 

One has to note, that equation (26) does not provide an explicit estimator for ��	
 since some terms 

on the right hand side of the equation also contain the unknown��	
.  The estimator of ��	
 can 

therefore be calculated only by iteration. The approximate variance of this ��	
 estimator is of the 

form: 

 

J¶´(�cd<) = 	E�F +	W¬­/¯	°<;[R±¯/(8�±¯)]V�² {L |− 8P , ³´P} − L |− 8P , ³}~[F,  (27) 

 

where E� denotes standard error in the determination of the largest observed flood record ��	
��� . 

 

The maximization of the likelihood function k(a) together with condition (26), provides the maximum 

likelihood estimates of the flood hazard parameters �̅, �̅\ and ��	
 which solution can be readily 

obtained by an iterative procedure.  

 

Some alternative techniques for assessment of ��	
 
 

Procedure based on Order Statistics 

 

Assuming that in the site of concern, there is a record of n floods with levels �8,�F, … ,�R. Each 

flood level �� is greater than or equal to ���
	(f = 1,… , �), where ���
 is a known level of 

completeness i.e. all floods having flood level greater than or equal to ���
 are recorded. The time 

span of the flood record is denoted as T. Assuming that the flood levels m are independent, identically 

distributed, random values having PDF &�(�|�cgR) and CDF, ��(�|�cgR) respectively. The 

parameter ��	
 is the unknown, the site characteristic upper limit of the flood level.  

 

If the � flood records are arranged in increasing order, that is �cgR ≤ �8 ≤ �F ≤ ⋯ ≤ �R�8 ≤�R ≤ ��	
, any empirical distribution function �̧�(�|�cgR) can be approximated as: 

 

�̧�(�|�cgR) = '(
) 0															&u´	� < �8f �] 													&u´	�g ≤ � ≤ �gj81																	&u´	� ≥ �R,														 (28) 

where  f = 1,… , � − 1. 

 

The approximate value of the integral ¦ [��( |�cgR)]R¡ c¢£¤c¢z¥ , (equation 25), is then: 

 



 

 

= [��( |�cgR)]R¡ 
c¢£¤

c¢z¥
= eNf�OR (�gj8 −�g)R�8

gh8  

= �cd<©ª« −e WN1 − f�OR − N1 − f + 1� OR[R�8
ghC �R�g. 

(29) 

 

Since lim
→B(1 + 1 �⁄ )R = e, and after simple rearrangement, order statistics estimator 

(29) takes a simple form: 

�»cd< = �cd<©ª« + ¼�cd<©ª« − t8eµ�g�R�g
R�8
ghC ½, 

 

 

 

(30) 

where c8 = 1 − 1 e ≅ 0.632⁄ .  

 

Assuming that the standard error in the determination of the flood records �8, �F, … ,�R is known 

and equal to σ%, for large �, the approximate standard deviation of the estimator (30) is equal to 

 

Ec»¢£¤ = ÂJ¶´(�»cd<) = ÃtCE�F + _�»cd< −�cd<©ª« `F, (31) 

 

where  tC = (1 + µ�8)F + µ�F (1 − µ�8) (1 + µ�8) ≅ 1.93⁄ . 

 

Estimator (30) is very useful. It can be used when the functional form of the CDF of flood level ��(�|�cgR), is not known or known only approximately. Also, it can be used when only information 

about the largest floods is available. Despite of the fact that the procedure was not design for small 

number of observations, because the contribution of low level floods decreases rapidly with increasing f, the procedure relies only on the knowledge of a few of the largest flood events. However, in the 

next paragraph an alternative technique is discussed designed specifically for the case when only 

several of the largest flood records are known.  

 

 

Procedure based on a few largest flood records. 

 

In the language of mathematical statistics, the case in which a known number of observations is 

missing from either end of the distribution is known as (single) data censoring (David, 1981).  The 

problem of estimating the bounds of random variables when the data is censored, and only a few 

largest (or smallest) observations are available, has been extensively discussed by Cooke (1980). 

Theoretical results expressed in terms of determination of the maximum flood level characteristic to 

the site can be summarized as follows.  

 



 

 

Assuming, in the vicinity of the site of concern, only the�C largest floods are knownout of � occurred 

flood events with levels �g ≥ �cgR	(f = 1,… , �), which occurred. Following Gnedenko’s condition 

(Gnedenko, 1943), that for a very broad class of CDFs, when their argument is near to the upper 

endpoint and the CDF is linear, one can justify an estimator of ��	
 of the following form: 

 

�»cd< =e¶g�R�gj8
Rs
gh8  (32) 

 

where ¶g 	(f = 1,… , �C) are the coefficients to be determined. Concentrating on the most important 

case from a practical point of view, viz. when the distribution of the flood levels is truncated from the 

top, Cooke (1980) has found that for truncated distributions, the minimization of the mean squared 

error of estimator (32) can be obtained when ¶8 = 1 + 1 �C⁄ , ¶F = ⋯ = ¶Rs�8 = 0, and ¶Rs =−1 �C⁄ , that is Å = _�cd<©ª« −�R�Rsj8` �C⁄  and therefore: 

 

�»cd< = �cd<©ª« + 1�C _�cd<©ª« −�R�Rsj8`. (33) 

 

Probably, the greatest attraction of estimator (33) relies on its simplicity and that even for a small 

number of observations �C, the estimator is nearly optimal (in the sense of its mean squared errors). 

This emanates as a result of the fact that for large�, the largest few observations carry most of the 

information about its endpoint. It is interesting to note that the value of ��	
 estimated according to 

formula (33) is based only on two observations: the �Cth largest flood level �R�Rsj8, and the largest 

observed flood level ��	
��� . Clearly, the better estimator of ��	
 can be obtained by inclusion of the 

remaining �C − 2 largest observations. This can be done by application of the Quenouille’s 

technique, originally developed for averaging of the bias of an estimator (Quenouille, 1956). 

Averaging the correcting factor Å = _�cd<©ª« −�R�gj8` �C⁄  over the  �C − 1 possible choices 

produces: 

 

Å = 1�CÆ�cd<©ª« − 1�C − 1e�R�gj8
Rs
ghF Ç, (34) 

 

and therefore, the estimator of �cd< takes the form: 

 

�»cd< = �cd<©ª« + 1�CÆ�cd<©ª« − 1�C − 1e�R�gj8
Rs
ghF Ç. (35) 



 

 

 

Assuming that the standard errors in determination of the flood levels �R�gj8 are the same and equal 

to E�, the approximate variance of the estimator (35) is: 

 

J¶´(�»cd<) = tCE�F + ∆F, (36) 

 

where  tC = (�CF + �C − 1) [�C(�C − 1)]⁄ . 

 

The greatest attraction of estimator (36) relies on its simplicity and that it requires only the knowledge 

of magnitudes of a few largest events.  

 

 

Robson-Whitlock procedure 

 

Let us assume that the analytical form of the flood level distribution��(�|m��
)is not known and we 

want to estimate the right end point of the distribution, viz. the maximum flood �cd<. This can be 

achieved in several ways. One of them is to apply the classical, (Quenouille, 1956) technique of 

successive bias reduction, modified to fit the factorial series rather than the power series in1 �⁄ .  

Robson and Whitlock (1964) showed that, under very general conditions, and when the data are 

arranged in ascending order of flood levels, viz. �8 ≤ �F ≤ ⋯ ≤ �R�8 ≤ �cd<©ª« , Quenouille’s 

approach leads to the following rule in estimation of �cd< 

 

�»�	
 = ��	
©ª« + _��	
©ª« −�R�8`. (37) 

 

Equation (37) was probably first derived by Robson and Whitlock (1964), and so it is often called the 

Robson-Whitlock estimator. It can be shown that the above estimator is mean-unbiased to the order ��F and asymptotically median-unbiased. The simplicity of the formula (37) makes it very attractive. It 

can be applied in cases of limited and/or doubtful flood data, when one wants to get quick results 

without going into sophisticated analysis. Unfortunately, it can be shown, that the bias reduction is 

achieved at the expense of a high mean-squared error value. In fact, Robson and Whitlock (1964) 

derived a general formula for an estimator of truncation point, with mean unbiased to any order ��É: 

 

�»cd< =e(−1)� NÊ + 1x + 1O�R��
É
�hC  (38) 

 



 

 

where 0 < Ê < �. Also, this formula does not provide a guarantee that �»cd<, the estimated upper 

point of flood level distribution, is equal to or exceeds the maximum flood level �cd<©ª« , already 

observed.  

 

The approximate variance of the Robson-Whitlock estimator of ��	
 is of the form: 

 J¶´(�»�	
) = 5E�F + _��	
��� −�R�8`F, (39) 

 

where E�denotes standard error in the determination of the largest observed flood record �cd<©ª« .  

 

 

Some Special Cases 

 

Only largest historic flood records are available.   

 

For many flood-threatened areas, long flood historic records are available but they are incomplete and 

contain information only about the largest and catastrophic flood occurrences.   

 

In such a case, the likelihood function k(a) of the unknown flood hazard parameters a = _�̅, �̅\` takes 

the form (20). Further simplification of the procedure for flood hazard assessment can be obtain if the 

Poisson-gamma, compound distribution (12) is replaced by the classic Poisson distribution (1) and the 

negative exponential-gamma distribution of flood level (13), is replaced by the classic negative 

exponential distribution (3).  

 

If ℓ = ln[k(a)], by solving the system of two equations 
�ℓ��� = 0 and  

�ℓ�^����� = 0, we obtain (Kijko and 

Dessokey, 1987; Kijko and Sellevoll, 1989): 

 

'ÌÌ
(
ÌÌ) 1� = 〈nm〉ÏF − 〈�CÏ〉ÏF − Ï8 	,																						
1�\ = 〈�C〉 −	〈nmÐ	lm〉 − 〈nC〉ÏF�cd<〈nmÐ〉 − 〈nm〉ÏF

 (40) 

 

where 

 

• 〈nm〉 = ∑ �C�/�CRs�h8 ,  



 

 

• 〈lm〉 = ∑ �C�/�CRs�h8 ,  

• 〈nmÐ〉 = ∑ �C�Ï(�C�)/�CRs�h8 ,   

• 〈nm	lmÐ〉 = ∑ �C��C�Ï(�C�)/�CRs�h8 ,  

• Ï8 = µ6�	(−�\���
),  
• ÏF = µ6�	(−�\��	
),  

 

and elements of vector Ð are equal to Ï(�C�) = exp	(−�\ 	�C�), where j = 1,...,�C. 

 

For the specified value of ��	
, the solution set of equations (40) provides the maximum likelihood 

estimates of the required flood hazard parameters � and ��.  It is interesting to note that for ��	
 →+∞, and  �� = const, the system of equations (40) is reduced to the maximum likelihood estimation 

of the parameters � and � of the first Gumbel distribution (Kimball, 1946).  

 

 

Largest historic flood records are not available  

 

In the case, when the paleo- and historic flood records are absent, all the above formalism can be 

significantly simplified. By replacing the respective compound distributions by their classic 

counterparts, a simple, overall maximum likelihood estimate of the � and �\ parameters can be 

obtained by the application of the additive property of likelihood functions (Rao, 1973). If applied to 

the current problem, the joint likelihood function of the �� parameter, which utilizes flood records 

having variable level of completeness (Figure 2), is defined as: 

 

k(�\) =r kg(�\|l�)«
gh8 , (41) 

 

 

where kg(�\|lg) is the special case of the likelihood function (23), i denotes index of the fÓÔ 

complete flood record, and i = 1,2,… , �. 
 

 

 



 

 

 

 
Figure 2. A schematic illustration of a flood record with variable level of completeness.(Modified after 

Kijko and Sellevoll, 1989). 
 

 

After assumption that flood levels are independent, identically distributed random variables, following 

the PDF (3), and for  �cd< → +∞, the likelihood function for the fÓÔ sub-record takes the form: 

 

kg(�\|lg) =r�\exp {−�\ |��(g) −�cgR(g) }~Rz
�h8 ,		 (42) 

 

where ��(�) is the sample of �g  flood records recorded during the time span of the fÓÔ sub-record.  

Following equation (23), the joint likelihood function, which utilizes records all floods within the entire 

span of the record, takes the form: 

 

k(�\) = 	rr�\exp {−�\ |��(g) −���
(g) }~Rz
�h8

«
gh8 .	 (43) 

 

One can show (Kijko and Smit, 2012), that maximization of (43) provides the maximum likelihood 

estimator of  β� in the simple form: 

 

��\ = ¼ 8́��\(8) + F́��\(F) +⋯+ Ṍ��\(Õ)½
�8, (44) 

 

where ǵ = �g �⁄ ;� = ∑ �g«gh8  is total number of floods in complete flood record with levels equal or 

exceeding the relevant level of completeness ���
(�)
, and  ���(�) are: 

 



 

 

���(�) 	= 1〈lg〉 − m��
(�) 	, (45) 

 

where 〈lg〉 = ∑ czÖRzRz�h8  and denotes the sample mean of the flood records observed within complete 

part of the flood data i. It is easy to note that the parameters ���(�)calculated in this manner are the 

simple estimators of the �� parameters, calculated for individual complete flood records i, (f =1,… , �). The estimator (33) has exactly the same form as the classic Aki-Utsu estimator of the�-value 

of in the frequency-magnitude Gutenberg-Richter relation (Aki, 1965, Utsu, 1965). 

 

One of advantages of application of the maximum likelihood procedure for parameters estimation is 

fact, that it provides straightforward approximations for the standard errors and confidence intervals. 

Based on the Central Limit Theorem, it can be shown (e.g. Mood et. al., 1974), that under suitable 

regularity conditions and for a sufficiently large number of events, the estimator (44) is approximately 

normally distributed about its mean and its sample standard deviation is defined as: 

 

σ»×̂ = ���√� (46) 

 

The confidence intervals of estimator (44) are: 

 

��� ± ÚÛ F⁄ EÜV× . (47) 

 

In equation (47), zÞ F⁄   denotes the (1 − α/2) quintile of the standard normal distribution. The natural 

question is: how many events are needed in order to be sure that the estimator of ��� is distributed 

normally.  According to Jansson (1966), the sum of 12 uniformly distributed random numbers will 

create a set of random numbers with a bell-shape distribution that is approximately Gaussian. 

Surprisingly, such an approximation by only 12 numbers fairly sound, especially if only the central part 

(mean ± SD) of such a Gaussian-like distribution is explored. Obviously, if inference is to be based on 

the tail of such a distribution, more observations are required.  

 

Once the value of parameter ���is known, the mean value of flood activity rate can be calculated. 

Following our notation,  � ≡ 	�(���
) denotes the site-characteristic, flood activity rate with an flood 

level equal to or greater than ���
. It can be shown (Kijko and Sellevoll, 1989; Kijko and Smit, 2012), 

that if the number of floods per unit of time is a Poisson random variable, the maximum likelihood 

estimator of �(���
) takes the form: 

 



 

 

��(�cgR) = 	 �∑ �g ∙ exp {−��� |���
(g) −���
}~«gh8 . 
(48) 

 

For only one complete flood record (i.e. where � = 1; 	���
(8) =	���
(F) = ⋯ = ���
(«) = ���
; � = �8 

with �F = �à = ⋯ = 0 and � = �8 with �F = �à = ⋯ = 0), the estimator (48), reduces to the classic 

maximum likelihood estimator of parameter of Poisson distribution and takes simple form � �⁄ . 

 

This formalism can be applied to flood from rainfall data in a specific subset of cases where reliable 

flood records are not available. As long as one accepts the assumption that flood levels can be 

described as a linear function of rainfall, rainfall records can be used as a proxy for the corresponding 

flood observations generating an index of severity. 
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